Package: plsmmLasso 1.1.0
plsmmLasso: Variable Selection and Inference for Partial Semiparametric Linear Mixed-Effects Model
Implements a partial linear semiparametric mixed-effects model (PLSMM) featuring a random intercept and applies a lasso penalty to both the fixed effects and the coefficients associated with the nonlinear function. The model also accommodates interactions between the nonlinear function and a grouping variable, allowing for the capture of group-specific nonlinearities. Nonlinear functions are modeled using a set of bases functions. Estimation is conducted using a penalized Expectation-Maximization algorithm, and the package offers flexibility in choosing between various information criteria for model selection. Post-selection inference is carried out using a debiasing method, while inference on the nonlinear functions employs a bootstrap approach.
Authors:
plsmmLasso_1.1.0.tar.gz
plsmmLasso_1.1.0.zip(r-4.5)plsmmLasso_1.1.0.zip(r-4.4)plsmmLasso_1.1.0.zip(r-4.3)
plsmmLasso_1.1.0.tgz(r-4.4-any)plsmmLasso_1.1.0.tgz(r-4.3-any)
plsmmLasso_1.1.0.tar.gz(r-4.5-noble)plsmmLasso_1.1.0.tar.gz(r-4.4-noble)
plsmmLasso_1.1.0.tgz(r-4.4-emscripten)plsmmLasso_1.1.0.tgz(r-4.3-emscripten)
plsmmLasso.pdf |plsmmLasso.html✨
plsmmLasso/json (API)
NEWS
# Install 'plsmmLasso' in R: |
install.packages('plsmmLasso', repos = c('https://sami-leon.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/sami-leon/plsmmlasso/issues
Last updated 5 months agofrom:07e0178cd0. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win | OK | Nov 09 2024 |
R-4.5-linux | OK | Nov 09 2024 |
R-4.4-win | OK | Nov 09 2024 |
R-4.4-mac | OK | Nov 09 2024 |
R-4.3-win | OK | Nov 09 2024 |
R-4.3-mac | OK | Nov 09 2024 |
Exports:create_basesdebias_plsmmfilter_nonzero_basesplot_fitplsmm_lassosimulate_group_intertest_ftune_plsmm
Dependencies:clicodetoolscolorspacedplyrfansifarverforeachgenericsggplot2glmnetgluegtablehdiisobanditeratorslabelinglarslatticelifecyclelinproglpSolvemagrittrMASSMatrixmgcvmunsellmvtnormnlmepillarpkgconfigR6RColorBrewerRcppRcppEigenrlangscalesscalregshapesurvivaltibbletidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Generate bases function matrix | create_bases |
Post-selection inference for PLSMM | debias_plsmm |
Filter bases functions | filter_nonzero_bases |
Visualization of estimated mean trajectories and nonlinear functions from a PLSMM | plot_fit |
Fit a high-dimensional PLSMM | plsmm_lasso |
Simulate PLSMM | simulate_group_inter |
Bootstrap joint confidence bands and L2-norm based test on nonlinear functions | test_f |
Tune Penalized PLSMM | tune_plsmm |